What is the cellular pathologist's role in molecular diagnostics for lymphoma?

Professor Kikkeri Naresh London

Molecular diagnostics

- Diagnostic tests Benign or malignant
- Diagnostic tests to assign a specific diagnosis within the current WHO classification system
- Biomarkers predict disease behaviour, identify therapeutic targets, disease stratification, personalised medicine
- Rarely molecular monitoring of disease response and early recurrence

Cellular pathologist's role in molecular diagnostics for lymphoma - Diagnostic markers

- Sample quality
- Choice and request of a molecular test
- Interaction with clinical/biomedical scientists
- Result interpretation, integration and clinical context

Sample quality

- Though fresh tissue is preferred, paraffin embedded tissue is more practical
- Optimal fixation across the entire specimen
- Fixation in buffered formalin
- Avoid over-fixation
- Adequate representation of the abnormal population in the sample

Request of a 'diagnostic' molecular test

- Should not be part of a general panel of investigations
- Should be requested by an expert haematopatholgist following morphological and immunohistochemical / immunophenotypic work-up
- Under the current scenario <20% of the lymphoid lesions require a molecular test

Request of a 'diagnostic' molecular test

- A molecular test should only be requested when the result clearly impacts on final diagnosis
- Reactive lymphoid lesions: <10% show monoclonal rearrangements of IG/TCR genes, and ~15% show oligoclonal rearrangements of IG/TCR genes without an apparent explanation.
- Good quality light chain immunostains and application of flow cytometry reduces the requirement of *IG* gene rearrangement studies.

Polytypic

Polytypic

Monotypic

Monotypic

Choice of 'diagnostic' molecular tests

- FISH based tests investigating translocations (also provide information on copy number changes)
- Clonality tests based on clonal rearrangements of antigen receptor genes
- Mutation analysis

In lymphomas associated with specific chromosomal translocations, interphase-FISH is preferable over antigen receptor gene rearrangement analysis.

Gene targets for clonality analysis

Gene	Value
IGH	+++
IGK	+++
IGK del	+++
IGL	+
TCRG	+++
TCRB	++

Antigen receptor gene rearrangement studies

Histological pattern	Diagnostic suspicion	Test
Expansion of interfollicular T-cell areas	Early phase of angioimmunoblastic T-cell lymphoma	T-cell and B-cell clonality
Angioimmunoblastic T cell lymphoma with large B cells without demonstrable light chain restriction	Clonal large B cell expansion or evolving DLBCL in the context of angioimmunoblastic T-cell lymphoma	B-cell clonality
Medium and large T-cell expansion inside B-cell follicles	Peripheral T-cell lymphoma NOS, follicular variant	T-cell clonality
Paracortical expansion in a lymph node with mycosis fungoides	LN involvement by mycosis fungoides	T-cell clonality
T cell infiltrates in skin suspicious but not diagnostic of lymphoma	Mycosis fungoides and other cutaneous T cell lymphomas	T-cell clonality
Low-density lymphoid infiltrates in HTLV1 positive patients	Adult T cell leukaemia/lymphoma	T-cell clonality
Coeliac disease with downregulation of CD8 and clinical refractoriness	Refractory coeliac disease and Enteropathy associated T cell lymphoma in-situ	T-cell clonality
HRS cells with background atypical T cells	Classical Hodgkin lymphoma vs. T cell lymphoma	T-cell clonality

Skin

60Y Male Skin lesions, Lymphadenopathy & renal failure

Diagnosis Peripheral T cell lymphoma, NOS; lymphoepithelioid var. (Lennert's lymphoma)

Immunophenotype:

Positive: CD2, CD3, CD5, CD7, CD8

Negative: CD4, PD1, CD30 & B cell markers

TCRG rearrangements studies: Identical clonal products from skin, LN and renal biopsies

Antigen receptor gene rearrangement studies

Histological pattern	Diagnostic suspicion	Test
Marginal zone expansion in a lymph node, spleen, or an extranodal sample without demonstration of light chain restriction	Marginal zone lymphoma	B-cell clonality
Suspicion of mantle cell lymphoma but overfixed with negative cyclin D1 staining of internal positive control, and failed FISH	Mantle cell lymphoma	B-cell clonality
BCL2 negative follicles in a sample suspicious of follicular lymphoma, and with negative FISH results	Follicular lymphoma	B-cell clonality
Multicentric Castleman's disease with a high density of HHV8+ cells in the mantle zone	'Micro-lymphoma'	B-cell clonality

20Y Male Right groin LN

Diagnosis Follicular lymphoma, gr. 1

IGH & IGK rearrangements studies:

Identical clonal products from needle core and excision biopsies

Interphase FISH studies as 'diagnostic' tests

Histological pattern	Diagnostic suspicion	Test
Marginal zone expansion in an extranodal sample without demonstration of light chain restriction	Marginal zone lymphoma	MLT1 BCL10
BCL2 negative follicles in a sample suspicious of follicular lymphoma	Follicular lymphoma	BCL2 BCL6
Extensive follicular colonisation	Distinction of follicular lymphoma and marginal zone lymphoma with follicular colonisation	BCL2 BCL6
Suspicion of mantle cell lymphoma but overfixed with negative cyclin D1 staining of internal positive control	Mantle cell lymphoma	CCND1
Diagnosis of Burkitt lymphoma unresolved with morphology and immunohistochemistry	Burkitt lymphoma or a 'grey' zone lymphoma / double-hit lymphoma	MYC BCL2 BCL6 IG
Diffuse large B cell lymphoma with cyclin D1 expression	Distinction of DLBCL from Blastoid MCL	CCND1
CD5+ small B cell lymphomas with features not characteristic of CLL, MCL or MZL	CD5+ lymphoproliferative disorder associated with t(14;19) <i>BCL3-IGH</i>	BCL3

60Y Male Rapid growth of left tonsil

Diagnosis Follicular lymphoma gr. 2-3a with marginal zone diff.

Immunophenotype:

Positive: CD20, CD79a, BCL6, BCL2, MUM1, IgM, IgD, CD38 & CD44

Negative: CD5, CD10, CD23 Cyclin D1

FISH:

Additional copies of *BCL2* and *BCL*6; no rearrangement

No rearrangement of IGH

70Y Male Splenomegaly & multiple left large axillary LNs

Diagnosis: DLBCL

Immunophenotype:

Positive: CD20, CD10, BCL6, BCL2, MUM1

Ki-67>90%

Negative: CD5, Cyclin D1, EBER TdT

BCL6

FISH:

Two copies of rearranged *BCL*6; No normal BCL6

No rearrangement of *BCL*2 or *MYC*

B-cell lymphoma, unclassifiable with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma

Interphase FISH studies as 'diagnostic' tests

Morphology / immunophenotype	Diagnostic suspicion	Test
Differential diagnosis of splenic marginal zone lymphoma, hairy cell leukaemia and other B cell lymphomas	Splenic marginal zone lymphoma	Del 7q31-32
CD4+ T cell lymphocytosis with cells having features of prolymphocytes	T-cell prolymphocytic leukaemia	t(14;14)(q11; q32)
Features of hepatosplenic T cell lymphoma	Hepatosplenic T cell lymphoma	iso7q

Mutation analysis as 'diagnostic' tests

- MYD88 mutation in lymphoplasmacytic lymphoma
- BRAF mutation in hairy cell leukaemia

Molecular tests – prognostic markers in current clinical practice

 IGVH mutation in CLL and other small B cell lymphomas

TP53 mutation

FISH tests – prognostic markers in current clinical practice

TP53 deletion

API2-MLT1 translocation in gastric
 MALT lymphoma

 CLL: 13q- (good prognosis) +12, 11q-, 17p- (poor prognosis)

Interaction with clinical/biomedical scientists – pre-analytical

- Mark the most involved area on the section for FISH analysis saves reagents and time!
- Mention the content of B cells, T cells or presumed neoplastic cells for clonality tests – beware of pseudoclonality due to lowlevels of specific template
- Mention the provisional histological diagnosis for clonality tests -

-somatic hypermutation process can hamper primer binding and result in false negative test results

- florid reactive process may show oligoclonality/ monoclonality.

 Ideal for cellular pathologists involved in haematopatholgy and staff in involved in molecular pathology to be located in the same laboratory or work area

Interaction with clinical/biomedical scientists – post-analytical

- Get involved in fluorescent microscopy in cases posing difficulties in interpretation of FISH results – most cases are straight forward.
- Closer interaction with biomedical/clinical scientists is preferred for reporting of antigen receptor gene rearrangements.
- Involve biomedical/clinical scientists in integrated reporting.

False positive results commonly encountered with antigen receptor gene rearrangement studies

- Contamination
- Pseudoclonality (small biopsies)
- Reactive / inflammatory pathology: H.pylori gastritis; Hepatitis; viral infections; Sjögren's syndrome, Rheumatoid arthritis
- Canonical TCRγ
- Immune reconstitution following BMT
- Immune response to tumour
- Clonal lymphoid infiltrates in skin

False negative results commonly encountered with antigen receptor gene rearrangement studies

- Sample issues: representativeness, fixation issues, degradation of DNA
- Technical: Not using the complete panel of primers
- Precursor B cell expansions: Partial DJ rearrangements Oligoclonal (1/3 of B-ALL) Ongoing rearrangements at relapse
- Germinal centre and post-germinal centre expansions: Somatic hypermutations IgH deletion

Molecular subtyping of DLBCL

Alizadeh AA. Nature. 2000 Feb 3;403(6769):503-11

1 2 3 4 5 6 7 8 910111213141516

DLBCL molecular subtypes

Immunohistochemistry based algorithms show concordance with GEP All the algorithms tested showed significant difference in survival

DLBCL – Molecular subtypes Alternate algorithms

Amen F et al. Histopathology. 2007 Jul;51(1):70-9.

DLBCL molecular subtypes

Comparison of impact of immunohistochemistry-based algorithms & GEP-based classification on overall survival 62 patients on immuno-chemotherapy

Misclassification of GEP-defined GCB by immunohistochemistry based algorithms: 30-60%

Gutiérrez-García G et al; Blood. 2011 May 5;117(18):4836-43.

Impact of Bortezomib on molecular subsets of relapsed DLBCL

Treatment group		Response, n (%)			
	n (%)	Complete	Partial	None	P*
All patients	44	8 (18)	7 (16)	29 (66)	
DLBCL (de novo)†	31 (70)	7 (23)	6 (19)	18 (58)	.63
Molecular subtypes‡	27	6 (22)	6 (22)	15 (56)	
ABC DLBCL	12 (44)	5 (41.5)	5 (41.5)	2 (17)	
GCB DLBCL	15 (56)	1 (6.5)	1 (6.5)	13 (87)	< .001

Dunleavy K et al.Blood. 2009 Jun 11;113(24):6069-76.

REMoDL-B study Univ. of Southampton, UK

Hypothesis: Bortezomib improves survival in ABC-DLBCL subset

Target total population

MYC translocation and protein expression in DLBCL

Horn et al, Blood. 2013;121(12):2253-2263

Genomic alterations in DLBCL

Genomic alterations in DLBCL

Genomic alterations in Burkitt lymphoma

Mutations in BL vs. DLBCL

Love et al, Nature Genetics, 2012

Lymphoma diagnosis and work-up

 Targeted NGS platforms for mutation based disease classification, prognostication/prediction and identification of drug-able targets.

 Immunohistochemistry based assays as surrogates for mutations?

Acknowledgement

- Dr. Rashpal Flora
- Dr. Raida Ahmad
- Dr. Hazem Ibrahim
- Mr. Pritesh Trivedi
- Ms. Donna Horncastle
- Dr. Elisabet Nadal
- Ms. Rachael Beattie

- Dr. Alistair Reid
- Ms. Philippa May
- Mr. Inigo Ortiz
 DeMendibil
- Prof. Letizia Foroni
- Dr. Mikel Valganon
- Dr. Natalie Killeen

Thanks: To all colleagues who refer difficult and challenging cases